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Supplementary Methods 
 
This Supplementary Methods file provides information on the DNA extraction 
protocol and on the analysis of the genome data. This includes information on 
genome assembly, SNP calling and annotation, the estimation of population 
genetic parameters π and Tajima's D, the analysis of four different statistical 
models for assessing SNP differentiation, the quantification of SNP differentiation 
using GLM and FDR calculation, the clustering analysis of random and 
significantly differentiated SNPs, functional enrichment analyses using Gowinda 
and GeneSet analyses, and analyses of the overlap of our candidate genes with 
the GenAge database and three other "longevity" E&R studies. 
 
Pooled DNA extraction and sequencing 
The pools of 250 female flies were frozen in liquid nitrogen, homogenized using a 
mortar and pestle, and then incubated in lysis buffer (100 mM Tris-Cl, 100mM 
EDTA, 1% SDS, 1 mg/ml Proteinase K) at 56°C for 30 min and 70°C for 30 min. 
After lysis, the samples were treated with RNAse A (3 mg per 250 µl aliquot) at 
37°C for 30 min. Then 39 µl 8M potassium acetate solution was added and the 
samples were incubated on ice for 30 min to precipitate protein. The samples 
were centrifuged at 14.000 rpm for 15 minutes and the supernatant was 
transferred to a new tube. One volume of phenol-chloroform-isoamylalkohol 
(25:24:1) was added, the sample was thoroughly shaken en then centrifuged 5 
min at 14.000 rpm. The upper aqueous phase was transferred to a new tube and 
washed with 0.75 volume of chloroform, by repeating the steps above. The DNA 
was then precipitated by adding three volumes of ice cold 100% ethanol and 
centrifuging for 15 min at 14.000 rpm at 4°C. After washing the pellet with 70% 
ethanol and allowing it to dry at room temperature, it was resuspended in 50 µl 
TE buffer. DNA was quantified on a Qubit 2.0 spectrophotometer (Life 
Technologies) and the quality was assessed with a Fragment Analyzer 
(Advanced Analytical). DNA libraries were prepared from 300 ng gDNA using the 
Illumina TruSeq Nano Library preparation kit; following the manufacturer’s 
instructions for 350 bp insert sizes. The 24 samples were sequenced on eight 
lanes (three multiplexed samples per lane) of a HiSeq 2500 sequencer. 
 
Genome Assembly 
The raw 100-bp paired-end reads were filtered for a minimum base quality of 20 
and a minimum read length of 70 using PoPoolation v.1.2.2 (Kofler et al. 2011). 
Reads were then aligned to a “hologenome” reference, which consists of the 
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genomes of D. melanogaster (v.6.04) and microbial symbionts (hologenome 
adapted from http://bergmanlab.genetics.uga.edu/?p=2033) using the mem 
algorithm of BWA v.0.7.10 with default settings (Li 2013). Mapped reads were 
filtered for a minimum mapping quality of 30 using samtools v.1.1 (Li and Durbin 
2009); duplicate reads were removed using picard tools v.1.130 
(http://broadinstitute.github.io/picard); and the alignment around indels was 
optimized using GATK v.3.3.0 (McKenna et al. 2010). Insertion-deletions (indels) 
and their five flanking nucleotides (on either side) were masked if the indel was 
supported by at least 48 reads in total across all populations (Kapun et al. 
unpublished data). In addition, using RepeatMasker v.4.0.5 
(http://www.repeatmasker.org) with default parameters, we generated a Genome 
Transfer Format (GTF) file to mask simple sequence repeats and transposable 
elements using the D. melanogaster genome v.6.04. 
 
SNP Calling 
Polymorphic sites were identified using conservative criteria (Fabian et al. 2012). 
We first excluded all sites with a coverage below 30 as well as sites that fell 
within the top 2% of the maximum coverage distribution of each sample since 
these may mostly represent copy number variations or assembly errors. We 
identified SNPs by pooling allele counts across all populations and considered 
only sites with a minor allele count of at least 48 as being polymorphic. This 
threshold minimizes the impact of sequencing errors; it assumes that alleles with 
a high allele count in one or few populations, or alleles that have a low number in 
multiple populations, are correctly called SNPs. In total, we identified 1'238'970 
SNPs. Finally, SNPs were screened for markers that indicate the presence of 
inversion polymorphisms (Kapun et al. 2014). The average allele frequency of 
these inversion-specific marker SNPs was used to estimate inversion 
frequencies in the EE populations. This analysis indicated that the common 
cosmopolitan inversions In(2L)t, In(3R)C and In(3R)Mo occurred at very low 
frequencies (2-6% of the reads on average) in several populations. We did not 
find consistent frequency differences among regimes, which suggests that 
inversions do not play a role in our EE populations (Supplementary Result S8). 
 
Estimation of Population Genetic Parameters 
Two standard population genetic parameters, π and Tajima's D (Charlesworth 
and Charlesworth 2010), were calculated to characterize genome-wide patterns 
of genetic variation and differentiation. We used custom scripts to estimate π 
(Kapun et al. unpublished data) and PoPoolation v.1.2.2 (Kofler et al. 2011) to 
estimate Tajima's D for each polymorphic site. Reads were subsampled to a 
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coverage of 50x before calculating Tajima's D. We calculated average values of 
π and D for non-overlapping windows of 200 kB across the different 
chromosomal arms. ANOVA was used to analyze genome-wide patterns of π 
and Tajima's D in 200 kb windows, followed by Tukey’s HSD post-hoc tests in R. 
Bonferroni correction was applied to account for multiple testing (see 
Supplementary Result S4 for more information). 
 
Quantifying SNP Differentiation 
Our EE design combines two selection regimes; we thus tested for 'main effects' 
of both regimes on SNP differentiation as well as their interaction. We assessed 
the performance of four different types of models on simulated datasets, created 
using different assumptions regarding selection intensity, population size, and 
initial allele frequencies: (1) ANOVA on arcsine square root transformed allele 
frequencies, (2) GLM with binomial error structure on the read counts, (3) GLM 
with a quasibinomial error structure, and (4) generalized linear mixed models 
(GLMM) with binomial error structure and using replicate population as a random 
effect. Details of these analyses, which demonstrated that the binomial GLM had 
the highest true discovery rate, are given in Supplementary Result S2. 
 We used the binomial GLM approach to analyze the read counts of all bi-allelic 
SNPs in our dataset, i.e. each read either represents the major allele (‘1’, defined 
as the allele that occurs most frequently among all 24 EE populations) or the 
minor allele (‘0’). The model, implemented in R (v.3.2.2), included the two 
selection regimes (‘developmental diet’ and ‘age at reproduction’) and their 
interaction as fixed factors. P-values for the two main factors and the interaction 
term were obtained through analysis of deviance based on 𝜒2 tests using the 
anova function.  
 To correct for multiple testing, and to determine a cut-off for significantly 
differentiated SNPs, we calculated false discovery rates (FDR) following the 
procedure of Jha et al. (2015). To do so, the labels of the SNP dataset were 
permuted in a pseudo-randomized fashion: i.e., the labels (the identity) of the two 
selection regimes were randomly reassigned to the complete SNP dataset, with 
the criterion that randomization had to produce a maximal mismatch with the 
actually observed data. We applied two randomization criteria to do so: (1) A 
sample should never get the same treatment label (e.g. an sample 'LE', should 
never be 'LE' again, but could be for example HP, CE, LP, et cetera); and (2) 
replicates of a given regime combination can never be replicates of a newly 
assigned regime combination (e.g., the samples LE-1, LE-2 and LE-3 can never 
become HP-1, HP-2 and HP-3, but, for example, HP-1, LP-2 and CP-3). Apart 
from these criteria, samples were completely randomly drawn and assigned new 
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labels. We generated ten permuted datasets using this procedure (see Table 1 
for identity of the samples in the ten permuted datasets used). 
  
Table 1. Identity of the labels for the ten permuted datasets (P1-10). The labels indicate EE 
regime combinations: larval diet ("L", "C" or "H") and age-at-reproduction ("E" and "P"). 

 

True	label	 P1	 P2	 P3	 P4	 P5	 P6	 P7	 P8	 P9	 P10	

LE-1	 LP	 HE	 HP	 LP	 HP	 CE	 CE	 HE	 CP	 HP	

LE-2	 CP	 CE	 LP	 HE	 CE	 CP	 LP	 LP	 HP	 CP	
LE-3	 CE	 LP	 CP	 HP	 LP	 HP	 CP	 HP	 HE	 HE	

LE-4	 HE	 CP	 CE	 CP	 HE	 LP	 HE	 CP	 LP	 CE	

CE-1	 LE	 CP	 HE	 CP	 CP	 LE	 HE	 LP	 HE	 CP	
CE-2	 HP	 HP	 LP	 LP	 HE	 LP	 LE	 HP	 HP	 LP	

CE-3	 LP	 LP	 LE	 HP	 HP	 CP	 HP	 HE	 LE	 LE	
CE-4	 CP	 LE	 HP	 HE	 LP	 HE	 CP	 LE	 CP	 HP	

HE-1	 HP	 CE	 CP	 LP	 CE	 CP	 CE	 CE	 HP	 LE	

HE-2	 LE	 LP	 CE	 HP	 CP	 CE	 LP	 LE	 CE	 CE	
HE-3	 LP	 HP	 LP	 CE	 LP	 HP	 CP	 LP	 CP	 CP	

HE-4	 CE	 LE	 HP	 LE	 LE	 LP	 HP	 CP	 LP	 LP	
LP-1	 CP	 CP	 CE	 LE	 CP	 LE	 CE	 CP	 CP	 HP	

LP-2	 LE	 HE	 CP	 HE	 HP	 HE	 HP	 HP	 LE	 CP	
LP-3	 HE	 HP	 LE	 CE	 HE	 HP	 HE	 HE	 CE	 CE	

LP-4	 HP	 CE	 HE	 CP	 LE	 CP	 LE	 CE	 HP	 HE	

CP-1	 HP	 LE	 HP	 HE	 LE	 HP	 LE	 CE	 LE	 HP	
CP-2	 HE	 CE	 LP	 LE	 HP	 HE	 HP	 HP	 CE	 LE	

CP-3	 CE	 HP	 HE	 CE	 CE	 LE	 LP	 LE	 LP	 LP	
CP-4	 LE	 HE	 LE	 HP	 HE	 CE	 HE	 HE	 HE	 HE	

HP-1	 CP	 HE	 CE	 LE	 LE	 LP	 LE	 CP	 LP	 LP	

HP-2	 CE	 LP	 LE	 CE	 CP	 CE	 CP	 LP	 HE	 LE	
HP-3	 LP	 LE	 CP	 LP	 LP	 LE	 LP	 CE	 LE	 HE	

HP-4	 HE	 CP	 HE	 CP	 CE	 HE	 CE	 LE	 CE	 CE	

 
 Using GLM with the original sample labels as factors, we calculated P-values 
for every SNP to obtain an “observed” distribution of P-values with an unknown 
proportion of false positives. In addition, we also calculated P-values for the 
complete dataset ten times using each of the ten sets of pseudo-randomized 
labels to obtain an “expected” P-value distribution (i.e. empirical null distribution), 
which is determined by factors that are not directly related to the effects of the 
experimental design. P-value distribution plots revealed that all randomized 
datasets had very similar distributions (see Supplementary Result S3 for the 
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averaged P-values distribution plot of empirical and randomized datasets and the 
lowest P-values for each set). We then ranked the genome-wide P-values of the 
true labels and each of the P-value datasets of the ten permutations. For every 
"true" P-value we calculated the proportion of permuted P-values with a lower 
value than a given P-value. This value is equivalent to an FDR value as defined 
by Storey and Tibshirani (2003). Since we generated ten permuted datasets, we 
calculated the FDR for the observed dataset with each of the ten permuted 
datasets individually (i.e., for each SNP we calculated the FDR ten times). We 
then averaged these ten FDRs by calculating one mean FDR per SNP, to level 
out variation among the ten permuted datasets. The mean FDR for each SNP 
value was used for further analyses. 
 We used a conservative cut-off of FDR=0 to identify significantly diverged 
SNPs, i.e. we only considered SNPs with a lower P-value than any of the P-
values observed in the permuted datasets to be significantly diverged. These 
SNPs are the most extremely differentiated of the dataset and are therefore most 
likely to include targets of selection." 
 
Clustering Analysis of Random and Significantly Differentiated SNPs  
To visualize the overall genetic diversity among the 24 EE populations, we 
constructed a clustering tree by analyzing pairwise differences among 
populations based on 6500 randomly drawn SNPs (1000x bootstrapped) using 
the package PHYTOOLS in R. To quantify the number of distinct patterns in 
allele frequencies among significantly diverged loci, all significant SNPs identified 
by GLM were clustered using hierarchical clustering (“average” method, hclust 
package in R). Details of this analysis and results are given in Supplementary 
Result S5. 
 
Annotation 
SNPs were annotated with snpEff v.4.1e using the annotations for the D. 
melanogaster genome v.6.04 from FlyBase. SNPs that occurred within 200 bp of 
a gene were considered to represent upstream or downstream variants that 
might play a role in the transcriptional regulation of the corresponding gene. 
SNPs were classified into the following categories: ‘non-synonymous’, 
‘synonymous’, ‘UTR’, ‘intronic’, ‘up- or downstream’, and ‘intergenic’. SNPs may 
have multiple annotations if they fall within overlapping genes or if they can be 
classified into multiple categories. In total, we identified SNPs located in 16'777 
genes (see Supplementary Table S7 for features of annotated SNPs). 
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Enrichment and Functional Analyses  
We performed two complementary functional analyses to examine genetic 
pathways and functional mechanisms that may have been shaped by selection in 
our EE populations. First, we investigated enrichment of gene ontology (GO) 
categories among sets of significant SNPs using Gowinda (v.1.12) (Kofler and 
Schlotterer 2012). We used annotations from the D. melanogaster genome 
v.6.13 and a GO association file from FuncAssociate3.0 (Berriz et al. 2003; 
http://llama.mshri.on.ca/funcassociate) with the following settings: ‘--mode gene’, 
‘--gene-definition updownstream200’, ‘--simulations 100000’. Second, we used a 
gene set analysis following the procedure described by (Daub et al. 2013; 
https://github.com/CMPG/polysel). In contrast to the first method, this approach 
essentially analyzes all the genes in the dataset without a cut-off for the test 
statistic used. We used the P-values of the GLM analysis for this purpose. Gene 
sets and pathways that are evolutionary conserved or specific to D. 
melanogaster were downloaded from the KEGG (386), BIOCYC (250) and 
REACTOME (1225) databases through the NCBI Biosystems database. After 
removing gene sets with fewer than 10 genes and merging sets with high 
similarity, 16507 genes in 635 gene sets were included in this analysis.  
 
Overlap among Candidate Gene Lists 
To identify ‘canonical’ longevity genes among our candidate genes, we 
calculated the overlap of our dataset with genes from the GenAge database, a 
dataset that enlists genes that have experimental support for being involved in 
the regulation of lifespan (Tacutu et al. 2013). This database contains 188 
Drosophila genes with a known role in aging as well as 391 ‘aging’ genes in other 
model species that have orthologs in D. melanogaster 
(http://genomics.senescence.info/genes/models.html). The Entrez IDs of these 
genes were converted to FlyBase IDs using DAVID v.6.8 (Huang et al. 2009). 
The package "SuperExactTest" (v0.99.4) (Wang et al. 2015) in R was used to 
test for a significantly higher overlap than expected by chance among our dataset 
and the GenAge database. We used the total number of SNPs (1'238'970) and 
genes with SNPs (16'777) observed in our study as parameters in the analysis. 
Bonferroni correction (α = 0.05/43 intersections analysed with the 
SuperExactTest in total = 0.0012) was applied to account for multiple testing. We 
also determined whether there are overlaps between the ‘aging’ genes from 
GenAge and three published longevity E&R datasets (Remolina et al. 2012; 
Carnes et al. 2015; Fabian et al. 2018). All three studies used selection on 
postponed reproduction to evolve a longer lifespan, although details of the 
selection procedures vary. The three studies all used outbred laboratory 
populations originating from the USA, but the number of generations these 
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populations had been reared in the lab before onset of EE is variable (<0.5 year 
(Fabian et al. 2018) versus 5-7 years (Remolina et al. 2012; Carnes et al. 2015). 
Also the number of generations of EE differs, ranging from 80/50 (E/P regime, 
respectively) (Remolina et al. 2012), 293/144 (Fabian et al. 2018), to 850/170 
(Carnes et al. 2015) generations. Correlated responses in other life history traits, 
such as fecundity (observed among all populations), development time (observed 
in the populations studied by Carnes et al. 2015), or size (no correlated response 
observed in the populations studied by Carnes et al. 2015 and Fabian et al. 
2018) among others, were also observed for these EE populations, although the 
correlated responses differ per study. Next, we investigated the overlap of our 
dataset with these three longevity E&R studies. To do so, we converted the 
coordinates from the three published E&R studies to v.6 using the online 
conversion tool available at FlyBase 
(http://flybase.org/static_pages/downloads/COORD.html). To compare genes, 
the published FlyBase IDs of all studies were updated to the most recent IDs 
using the online tool at FlyBase 
(http://flybase.org/static_pages/downloads/IDConv.html). The SuperExactTest 
package was used to test for enriched overlaps as described above. 
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